z-logo
Premium
Inertia in an ombrotrophic bog ecosystem in response to 9 years' realistic perturbation by wet deposition of nitrogen, separated by form
Author(s) -
Sheppard Lucy J.,
Leith Ian D.,
Mizunuma Toshie,
Leeson Sarah,
Kivimaki Sanna,
Neil Cape J.,
Dijk Netty,
Leaver David,
Sutton Mark A.,
Fowler David,
Berg Leon J.L.,
Crossley Alan,
Field Chris,
Smart Simon
Publication year - 2014
Publication title -
global change biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.146
H-Index - 255
eISSN - 1365-2486
pISSN - 1354-1013
DOI - 10.1111/gcb.12357
Subject(s) - ombrotrophic , nitrate , calluna , ammonium , ecosystem , mesocosm , nitrogen , environmental science , ecology , chemistry , bog , environmental chemistry , agronomy , peat , biology , moorland , organic chemistry
Abstract Wet deposition of nitrogen (N) occurs in oxidized (nitrate) and reduced (ammonium) forms. Whether one form drives vegetation change more than the other is widely debated, as field evidence has been lacking. We are manipulating N form in wet deposition to an ombrotrophic bog, Whim (Scottish Borders), and here report nine years of results. Ammonium and nitrate were provided in rainwater spray as NH 4 Cl or NaNO 3 at 8, 24 or 56 kg N ha −1  yr −1 , plus a rainwater only control, via an automated system coupled to site meteorology. Detrimental N effects were observed in sensitive nonvascular plant species, with higher cumulative N loads leading to more damage at lower annual doses. Cover responses to N addition, both in relation to form and dose, were species specific and mostly dependent on N dose. Some species were generally indifferent to N form and dose, while others were dose sensitive. Calluna vulgaris showed a preference for higher N doses as ammonium N and Hypnum jutlandicum for nitrate N. However, after 9 years, the magnitude of change from wet deposited N on overall species cover is small, indicating only a slow decline in key species. Nitrogen treatment effects on soil N availability were likewise small and rarely correlated with species cover. Ammonium caused most N accumulation and damage to sensitive species at lower N loads, but toxic effects also occurred with nitrate. However, because different species respond differently to N form, setting of ecosystem level critical loads by N form is challenging. We recommend implementing the lowest value of the critical load range where communities include sensitive nonvascular plants and where ammonium dominates wet deposition chemistry. In the context of parallel assessment at the same site, N treatments for wet deposition showed overall much smaller effects than corresponding inputs of dry deposition as ammonia.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here