z-logo
open-access-imgOpen Access
Behavioral phenotypes of genetic mouse models of autism
Author(s) -
Kazdoba T. M.,
Leach P. T.,
Crawley J. N.
Publication year - 2016
Publication title -
genes, brain and behavior
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.315
H-Index - 91
eISSN - 1601-183X
pISSN - 1601-1848
DOI - 10.1111/gbb.12256
Subject(s) - autism , phenotype , autism spectrum disorder , neuroscience , heritability of autism , genetics , psychology , neurodevelopmental disorder , biology , gene , psychiatry
More than a hundred de novo single gene mutations and copy‐number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism‐relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here