Premium
Scaling and fractality in fatigue resistance: Specimen‐size effects on Wöhler's curve and fatigue limit
Author(s) -
Carpinteri Alberto,
Montagnoli Francesco,
Invernizzi Stefano
Publication year - 2020
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/ffe.13242
Subject(s) - scaling , fractal , fatigue limit , limit (mathematics) , mathematics , mathematical analysis , scaling law , materials science , geometry , composite material
The present contribution investigates size effects on Wöhler's curve in accordance with dimensional analysis and intermediate asymptotics theory. These approaches provide a generalised equation able to interpret the specimen‐size effects on Wöhler's curve. Subsequently, using a different approach based on lacunar fractality concepts, analogous scaling laws are found for the coordinates of the limit‐points of Wöhler's curve, so that a theoretical explanation is provided to the decrement in fatigue resistance by increasing the specimen size. Eventually, the proposed models are compared with experimental data available in the Literature, which seem to confirm the advantage of applying fractal geometry to the problem.