Premium
A material model to reproduce mixed‐mode fracture in concrete
Author(s) -
Suárez Fernando,
Gálvez Jaime,
Cendón David
Publication year - 2019
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/ffe.12898
Subject(s) - fracture (geology) , structural engineering , mode (computer interface) , materials science , finite element method , fracture mechanics , mixed mode , point (geometry) , composite material , engineering , computer science , geometry , mathematics , operating system
This paper presents a material model to reproduce crack propagation in cement‐based material specimens under mixed‐mode loading. Its numerical formulation is based on the cohesive crack model, proposed by Hillerborg, and extended for the mixed‐mode case. This model is inspired by former works by Gálvez et al but implemented for its use in a finite element code at a material level, that is to say, at an integration point level. Among its main features, the model is able to predict the crack orientation and can reproduce the fracture behaviour under mixed‐mode fracture loading. In addition, several experimental results found in the literature are properly reproduced by the model.