z-logo
Premium
A fracture mechanics model to study indentation cutting
Author(s) -
Terzano M.,
Spagnoli A.,
Ståhle P.
Publication year - 2018
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/ffe.12750
Subject(s) - indentation , fracture mechanics , mechanics , carving , materials science , fracture (geology) , wedge (geometry) , stress intensity factor , plasticity , slicing , finite element method , stress (linguistics) , structural engineering , geometry , composite material , mechanical engineering , engineering , mathematics , physics , linguistics , philosophy
Many cutting processes, such as chopping, slicing, and carving, consist in 2 different stages: an initial stage of indentation, in which the cutting tool is pushed into the material under the action of an external force, and a second stage, where the target material undergoes a progressive separation. This second stage is characterised by the formation of a fracture surface followed by the cut propagation due to the increasing external force, until eventually a steady state might occur. The purpose of this paper is to analyse the cutting process by means of some concepts of fracture mechanics and discuss the occurrence of the steady state. A simple model is used to obtain an analytic expression of the stress intensity factor at the tip of the cut and investigate the evolution of the fracture process. It is found that the cut propagation depends on the wedge sharpness. The analytic results are compared with finite element analyses, where the effect of tip blunting due to plasticity is taken into account. The influence of the cutting tool geometry is also discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here