z-logo
Premium
Dual boundary element method and finite element method for mixed‐mode crack propagation simulations in a cracked hollow shaft
Author(s) -
Citarella R.,
Giannella V.,
Lepore M.,
Dhondt G.
Publication year - 2018
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/ffe.12655
Subject(s) - fracture mechanics , stress intensity factor , materials science , structural engineering , crack closure , strain energy release rate , crack growth resistance curve , finite element method , torsion (gastropod) , boundary element method , crack tip opening displacement , strain energy density function , mechanics , composite material , engineering , physics , medicine , surgery
Three‐dimensional mixed‐mode crack propagation simulations were performed by means of the dual boundary element method code BEASY and 2 finite element method‐based crack propagation codes: ZENCRACK (ZC) and CRACKTRACER3D (CT3D). The stress intensity factors (SIFs) along the front of an initial semielliptical crack, initiated from the external surface of a shaft, were calculated for 4 different load cases: bending, press fit, shear, and torsion. The methods used for the SIF assessment along the crack front were the J‐integral for BEASY and ZC and the quarter point element stress method for CT3D. Subsequently, crack propagation simulations were performed, with the crack growth rate evaluated by using Paris' law, calibrated for the material at stake (American Society for Testing and Materials A469 steel). The kink angles were evaluated by using the minimum strain energy density and maximum tangential stress criteria for BEASY, the maximum energy release rate and maximum tangential stress for ZC, and the maximum principal asymptotic stress for CT3D. The results obtained in terms of SIFs and crack propagation life show very good agreement among the 3 codes. Also, the shape of the propagated crack, which is significantly out‐of‐plane for the shear and torsion loading, matched very well.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here