Premium
A fatigue damage indicator parameter for P91 chromium‐molybdenum alloy steel and fatigue pre‐damaged P54T carbon steel
Author(s) -
Socha G.,
Dietrich L.
Publication year - 2014
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/ffe.12104
Subject(s) - materials science , hysteresis , composite material , alloy steel , amplitude , carbon steel , alloy , deformation (meteorology) , stress (linguistics) , structural engineering , metallurgy , corrosion , linguistics , philosophy , physics , quantum mechanics , engineering
Two grades of structural steel were subjected to fully reversible, constant stress amplitude cyclic loading. The local strain response of the material was measured and recorded during the test, with the applied testing technique enabling the monitoring of hysteresis loop variation for the narrowest cross‐section of the hourglass specimen. Changes in hysteresis loop width, representing the local inelastic response of the material, were recorded in order to monitor the density of structural imperfections. Material ratcheting behaviour was observed as changes in the mean strain for selected load cycles. Ratcheting was attributed to local deformation of the material in the vicinity of imperfections such as voids or inclusions, as well as deformation induced by the propagation of microcracks. Definitions of a damage indicator parameter and damage parameter were proposed. The fatigue behaviour of the two investigated grades of steel was finally illustrated in the form of damage curves for different stress amplitudes and for undamaged and fatigue pre‐damaged material.