z-logo
Premium
Finite element simulation of dynamic crack propagation process using an arbitrary Lagrangian Eulerian formulation
Author(s) -
AMINI M. R.,
SHAHANI A. R.
Publication year - 2013
Publication title -
fatigue and fracture of engineering materials and structures
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.887
H-Index - 84
eISSN - 1460-2695
pISSN - 8756-758X
DOI - 10.1111/ffe.12023
Subject(s) - fracture mechanics , eulerian path , finite element method , mechanics , material point method , dynamic problem , structural engineering , stress intensity factor , computer science , materials science , mathematics , engineering , lagrangian , algorithm , physics
In this paper, the arbitrary Lagrangian Eulerian formulation is employed for finite element modelling of dynamic crack propagation problem. The application phase simulation of computational dynamic fracture is applied to model by which the crack propagation history and variation of crack velocity are predicted using the material dynamic fracture toughness. The dynamic solution of problem is accomplished using the implicit time integration method. The convective terms due to mesh‐material motion are taken into account via the convection equation. A robust and efficient mesh motion technique, that its equations need not to be solved at every time step, is employed in Eulerian phase. The mesh connectivity is preserved during the analysis. So, the successive remeshing of model is eliminated. When the dynamic fracture criterion is satisfied for crack growth, the presented algorithm allows the crack to advance by splitting the material particle at the crack tip. The dynamic energy release rate is calculated at each time step to determine dynamic stress intensity factor. The predicted results are compared with those obtained through the experimental study and remeshing technique cited in the literature. The proposed computational algorithm leads to an accurate and efficient simulation of dynamic crack propagation process.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here