Premium
Glycan quality control in and out of the endoplasmic reticulum of mammalian cells
Author(s) -
Harada Yoichiro,
Ohkawa Yuki,
Maeda Kento,
Taniguchi Naoyuki
Publication year - 2022
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/febs.16185
Subject(s) - endoplasmic reticulum , glycan , glycosylation , glycoprotein , microbiology and biotechnology , endoplasmic reticulum associated protein degradation , n linked glycosylation , biology , unfolded protein response , biochemistry , function (biology) , secretory pathway , golgi apparatus
The endoplasmic reticulum (ER) is equipped with multiple quality control systems (QCS) that are necessary for shaping the glycoproteome of eukaryotic cells. These systems facilitate the productive folding of glycoproteins, eliminate defective products, and function as effectors to evoke cellular signaling in response to various cellular stresses. These ER functions largely depend on glycans, which contain sugar‐based codes that, when needed, function to recruit carbohydrate‐binding proteins that determine the fate of glycoproteins. To ensure their functionality, the biosynthesis of such glycans is therefore strictly monitored by a system that selectively degrades structurally defective glycans before adding them to proteins. This system, which is referred to as the glycan QCS, serves as a mechanism to reduce the risk of abnormal glycosylation under conditions where glycan biosynthesis is genetically or metabolically stalled. On the other hand, glycan QCS increases the risk of global hypoglycosylation by limiting glycan availability, which can lead to protein misfolding and the activation of unfolded protein response to maintaining cell viability or to initiate cell death programs. This review summarizes the current state of our knowledge of the mechanisms underlying glycan QCS in mammals and its physiological and pathological roles in embryogenesis, tumor progression, and congenital disorders associated with abnormal glycosylation.