z-logo
Premium
Phosphorylation status of BolA affects its role in transcription and biofilm development
Author(s) -
Galego Lisete,
Barahona Susana,
Romão Célia V.,
Arraiano Cecília M.
Publication year - 2021
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/febs.15447
Subject(s) - phosphorylation , microbiology and biotechnology , transcription factor , regulator , transcription (linguistics) , biology , mutant , response regulator , chemistry , biochemistry , gene , linguistics , philosophy
BolA has been characterized as an important transcriptional regulator, which is induced in stationary phase of growth, and in response to several stresses. In Escherichia coli , its cellular function is associated with cell wall synthesis and division, morphology, permeability, motility and biofilm formation. Phosphorylation has been widely described as one of the most important events involved in the modulation of the activity of many transcription factors. In the present work, we have demonstrated in vivo and by mass spectrometry that BolA is phosphorylated in four highly conserved protein positions: S26, S45, T81 and S95. S95 is located in the C terminus unstructured region of the protein, and the other three sites are in the DNA‐binding domain. These positions were mutated to nonphosphorylated residues, and their effects were investigated on different known BolA functions. Using northern blot experiments, we showed that the regulation of the expression of these Ser/Thr BolA mutants is performed at the post‐translational level. Western blot results revealed that the stability/turnover of the mutated BolA proteins is differently affected depending on the dephosphorylated residue. Moreover, we provide evidences that phosphorylation events are crucial in the modulation of BolA activity as a transcription factor and as a regulator of cell morphology and biofilm development. Here, we propose that phosphorylation affects BolA downstream functions and discuss the possible significance of these phosphoresidues in the protein structure, stability, dimerization and function as a transcription factor.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here