z-logo
Premium
Podocyte‐specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury
Author(s) -
Bettaieb Ahmed,
Koike Shinichiro,
Chahed Samah,
Zhao Yi,
Bachaalany Santana,
Hashoush Nader,
Graham James,
Fatima Huma,
Havel Peter J.,
Gruzdev Artiom,
Zeldin Darryl C.,
Hammock Bruce D.,
Haj Fawaz G.
Publication year - 2017
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/febs.14100
Subject(s) - epoxide hydrolase 2 , podocyte , kidney , endocrinology , medicine , acute kidney injury , chemistry , pharmacology , proteinuria , biochemistry , enzyme
Podocytes play an important role in maintaining glomerular function, and podocyte injury is a significant component in the pathogenesis of proteinuria. Soluble epoxide hydrolase ( sEH ) is a cytosolic enzyme whose genetic deficiency and pharmacological inhibition have beneficial effects on renal function, but its role in podocytes remains unexplored. The objective of this study was to investigate the contribution of sEH in podocytes to lipopolysaccharide ( LPS )‐induced kidney injury. We report increased sEH transcript and protein expression in murine podocytes upon LPS challenge. To determine the function of sEH in podocytes in vivo we generated podocyte‐specific sEH ‐deficient (pod‐ sEHKO ) mice. Following LPS challenge, podocyte sEH ‐deficient mice exhibited lower kidney injury, proteinuria, and blood urea nitrogen concentrations than controls suggestive of preserved renal function. Also, renal mRNA and serum concentrations of inflammatory cytokines IL ‐6, IL ‐1β, and TNF α were significantly lower in LPS ‐treated pod‐ sEHKO than control mice. Moreover, podocyte sEH deficiency was associated with decreased LPS ‐induced NF ‐κB and MAPK activation and attenuated endoplasmic reticulum stress. Furthermore, the protective effects of podocyte sEH deficiency in vivo were recapitulated in E11 murine podocytes treated with a selective sEH pharmacological inhibitor. Altogether, these findings identify sEH in podocytes as a contributor to signaling events in acute renal injury and suggest that sEH inhibition may be of therapeutic value in proteinuria. Enzymes Soluble epoxide hydrolase: EC 3.3.2.10 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here