z-logo
Premium
Oral drug delivery with nanoparticles into the gastrointestinal mucosa
Author(s) -
Liu Jiao,
Leng Ping,
Liu Yujun
Publication year - 2021
Publication title -
fundamental and clinical pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.655
H-Index - 73
eISSN - 1472-8206
pISSN - 0767-3981
DOI - 10.1111/fcp.12594
Subject(s) - drug delivery , gastrointestinal tract , drug , mucus , bioavailability , mucoadhesion , intestinal mucosa , pharmacology , in vivo , drug carrier , gastrointestinal epithelium , medicine , nanotechnology , materials science , biology , microbiology and biotechnology , ecology
Abstract The oral route of protein and peptide drugs has been a popular method of drug delivery in recent years, although it is often a challenge to achieve effective drug release and minimize the barrier functions of the gastrointestinal tract. Gastrointestinal mucosa can capture and remove harmful substances; similarly, it can limit the absorption of drugs. Many drugs are effectively captured by the mucus and rapidly removed, making it difficult to control the release of drugs in the gastrointestinal tract. The use of drug carrier systems can overcome the mucosal barrier and significantly improve bioavailability. Nanoparticle drug carriers can protect the drug from degradation, transporting it to a predetermined location in the gastrointestinal tract to achieve more efficient and sustained drug delivery. It is becoming clearer that the characteristics of nanoparticles, such as particle size, charge, and hydrophobicity, are related to permeability of the mucosal barrier. This review focuses on the latest research progress of nanoparticles to penetrate the mucosal barrier, including the delivery methods of nanoparticles on the surface of gastrointestinal mucosa, and aims to summarize how successful oral nanoparticle delivery systems can overcome this biological barrier in the human body. In addition, the in vitro model based on gastrointestinal mucus is an important tool for drug research and development. Here, we discuss different types of drug delivery systems and their advantages and disadvantages in design and potential applications. Similarly, we reviewed and summarized various methods for evaluating oral nanoparticles in in vitro and in vivo models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here