Premium
Algorithms for complex interval‐valued q‐rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS
Author(s) -
Garg Harish,
Ali Zeeshan,
Mahmood Tahir
Publication year - 2021
Publication title -
expert systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 38
eISSN - 1468-0394
pISSN - 0266-4720
DOI - 10.1111/exsy.12609
Subject(s) - topsis , computer science , fuzzy number , operator (biology) , fuzzy logic , fuzzy set operations , interval (graph theory) , fuzzy set , mathematical optimization , ideal solution , generalization , mathematics , algorithm , artificial intelligence , mathematical economics , biochemistry , chemistry , physics , repressor , combinatorics , transcription factor , gene , thermodynamics , mathematical analysis
Abstract The interval‐valued q‐rung orthopair fuzzy set (IVq‐ROFS) and complex fuzzy set (CFS) are two generalizations of the fuzzy set (FS) to cope with uncertain information in real decision making problems. The aim of the present work is to develop the concept of complex interval‐valued q‐rung orthopair fuzzy set (CIVq‐ROFS) as a generalization of interval‐valued complex fuzzy set (IVCFS) and q‐rung orthopair fuzzy set (q‐ROFS), which can better express the time‐periodic problems and two‐dimensional information in a single set. In this article not only basic properties of CIVq‐ROFSs are discussed but also averaging aggregation operator (AAO) and geometric aggregation operator (GAO) with some desirable properties and operations on CIVq‐ROFSs are discussed. The proposed operations are the extension of the operations of IVq‐ROFS, q‐ROFS, interval‐valued Pythagorean fuzzy, Pythagorean fuzzy (PF), interval‐valued intuitionistic fuzzy, intuitionistic fuzzy, complex q‐ROFS, complex PF, and complex intuitionistic fuzzy theories. Further, the Analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) method are also examine based on CIVq‐ROFS to explore the reliability and proficiency of the work. Moreover, we discussed the advantages of CIVq‐ROFS and showed that the concepts of IVCFS and q‐ROFS are the special cases of CIVq‐ROFS. Moreover, the flexibility of proposed averaging aggregation operator and geometric aggregation operator in a multi‐attribute decision making (MADM) problem are also discussed. Finally, a comparative study of CIVq‐ROFSs with pre‐existing work is discussed in detail.