Premium
Implementation of an optimized binary classification by GMDH‐type neural network algorithm for predicting the blast produced ground vibration
Author(s) -
Mohammadi Davood,
Mikaeil Reza,
AbdollahiSharif Jafar
Publication year - 2020
Publication title -
expert systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 38
eISSN - 1468-0394
pISSN - 0266-4720
DOI - 10.1111/exsy.12563
Subject(s) - computer science , rock blasting , vibration , binary number , artificial neural network , explosive material , flexibility (engineering) , ground vibrations , algorithm , data mining , pattern recognition (psychology) , artificial intelligence , mining engineering , mathematics , geology , statistics , chemistry , physics , arithmetic , organic chemistry , quantum mechanics
Ground vibration is one of the most important undesired phenomena resulting from blasting operations imposing damages to facilities and buildings on the one hand, and creating environmental problems in open pit mining on the other. Therefore, the present study aims to provide an optimized classification binary model to identify the blasting patterns with an acceptable ground vibration intensity to reduce the damages resulting from this artificial phenomenon. This study uses a binary method to provide an optimized classification model for predicting and evaluating the blasting patterns with the minimum ground vibration. Group Method of Data Handling‐Type Neural Network is used as one of the most practical optimization algorithms to solve complicated and uncertain problems in this modelling. In this study, by collecting the data of 52 different blasting patterns from Soungun copper mine, some of the most important geometric properties and the amount of ammonium nitrate fuel oil consumed in each blasting pattern are recorded. In addition, based on expertise and experience of experts, the degree of ground vibration produced by each blasting is qualitatively classified into four different ranges of very high, high, normal and low in the form of unacceptable (very high and High) and acceptable (normal and low) clusters. Based on the results obtained from the analyses, the developed model has a high flexibility and ability in the binary prediction of blasting patterns with an acceptable vibration magnitude.