Premium
Modelling material flow using the Milk run and Kanban systems in the automotive industry
Author(s) -
Simić Dragan,
Svirčević Vasa,
Corchado Emilio,
CalvoRolle José L.,
Simić Svetislav D.,
Simić Svetlana
Publication year - 2021
Publication title -
expert systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 38
eISSN - 1468-0394
pISSN - 0266-4720
DOI - 10.1111/exsy.12546
Subject(s) - kanban , computer science , automotive industry , material flow , particle swarm optimization , process (computing) , container (type theory) , production (economics) , industrial engineering , operations research , algorithm , artificial intelligence , engineering , mechanical engineering , ecology , control (management) , macroeconomics , economics , biology , aerospace engineering , operating system
Material flow management refers to the analysis and specific optimization of the inventory‐production system. Material flow can be characterized as the organized flow of material in a production process with the required sequence determined by a technological procedure. The Milk run system assures the transportation of materials at the right time and in an optimal manner. It should be combined with the Kanban system to highlight when something is required in the production process. This paper presents biological swarm intelligence, in general, and a particular model, particle swarm optimization (PSO), for modelling material flow using a Milk run system supported by a Kanban system in the automotive industry. The aim of this study is to create a new model for the optimal number of trailers for one train and optimal number of containers in a tugger train system when the route time period has been defined. A new modified PSO approach for integrating inventory‐production in a unique optimization model is used. The major modification to the original PSO is using the capacity of a container instead of a velocity component. Each new Kanban trigger is checked, and the total timing for the Milk run delivery solution is calculated for the necessary raw material capacity for each shop floor.