z-logo
Premium
Typicality‐based collaborative filtering for book recommendation
Author(s) -
B.L. Velammal
Publication year - 2019
Publication title -
expert systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 38
eISSN - 1468-0394
pISSN - 0266-4720
DOI - 10.1111/exsy.12382
Subject(s) - collaborative filtering , recommender system , computer science , similarity (geometry) , product (mathematics) , process (computing) , information retrieval , scheme (mathematics) , cold start (automotive) , artificial intelligence , data mining , mathematics , mathematical analysis , geometry , engineering , image (mathematics) , aerospace engineering , operating system
Nowadays, personalized recommender system placed an important role to predict the customer needs, interest about particular product in various application domains, which is identified according to the product ratings. During this process, collaborative filtering (CF) has been utilized because it is one of familiar techniques in recommender systems. The conventional CF methods analyse historical interactions of user‐item pairs based on known ratings and then use these interactions to produce recommendations. The major challenge in CF is that it needs to calculate the similarity of each pair of users or items by observing the ratings of users on same item, whereas the typicality‐based CF determines the neighbours from user groups based on their typicality degree. Typicality‐based CF can predict the ratings of users with improved accuracy. However, to eliminate the cold start problem in the proposed recommender system, the demographic filtering method has been employed in addition to the typicality‐based CF. A weighted average scheme has been applied on the combined recommendation results of both typicality‐based CF and demographic‐based CF to produce the best recommendation result for the user. Thereby, the proposed system has been able to achieve a coverage ratio of more than 95%, which indicates that the system is able to provide better recommendation for the user from the available lot of products.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here