Premium
Variable weight semantic graph‐based ontology mapping method
Author(s) -
Yang Feng
Publication year - 2019
Publication title -
expert systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 38
eISSN - 1468-0394
pISSN - 0266-4720
DOI - 10.1111/exsy.12337
Subject(s) - computer science , ontology , ontology alignment , semantic similarity , ontology based data integration , information retrieval , semantic mapping , semantic integration , graph , upper ontology , ontology components , similarity (geometry) , data mining , theoretical computer science , artificial intelligence , semantic web , semantic computing , image (mathematics) , philosophy , epistemology
Abstract The mapping method that is based on the name and structure of the ontology elements is the strategy used in most mapping methods. Methods using the name often only use the similarity between the individual elements in the ontology to predict the semantic relations between two ontologies, while the latter measure the mapping between two ontologies by means of the structural relations between the elements. The effects of these two kinds of mapping strategies are not ideal. Addressing this issue, the work presented in this paper proposes an ontology mapping approach, in which the ontology element name and structure are combined. It uses the approaches based on linguistics and distance to generate a variable weight semantic graph. On this graph, the similarity of element names and structure are calculated through iterative computation. In the process of iteration, similarity result values are constantly adjusted. The approach avoids the problem of single methods that cannot use the entire amount of ontology information; therefore, it provides a more ideal mapping result. For making full use of the message of ontology, our implementation and experimental results are provided to demonstrate the effectiveness of the mapping approach.