z-logo
Premium
Variable precision intuitionistic fuzzy rough set model and applications based on conflict distance
Author(s) -
Liu Yong,
Lin Yi,
Zhao Huanhuan
Publication year - 2015
Publication title -
expert systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 38
eISSN - 1468-0394
pISSN - 0266-4720
DOI - 10.1111/exsy.12083
Subject(s) - rough set , computer science , variable (mathematics) , fuzzy logic , data mining , artificial intelligence , set (abstract data type) , fuzzy set , similarity (geometry) , construct (python library) , algorithm , machine learning , mathematics , image (mathematics) , mathematical analysis , programming language
Due to the complexity and uncertainty of the physical world, as well as the limitation of human ability to comprehend, it is very difficult for any single method of uncertainty to effectively deal with the decision‐making problem that exists in real life. So, it is natural for us to think about incorporating the advantages of various theories of uncertainty to develop a more powerful hybrid method of soft decision‐making. In view of this recognition, the thought and method of intuitionistic fuzzy sets and variable precision rough sets are used to construct a novel intuitionistic fuzzy rough set model. With respect to the fact that the information system is intuitionistic fuzzy, the idea of measuring intuitionistic fuzzy similarity is used to define conflict distance. After that, this concept is combined with the variable precision rough sets so that a variable precision intuitionistic fuzzy rough set model is established, and its properties are investigated. After proposing an attribute reduction algorithm based on variable precision intuitionistic fuzzy rough sets, a case study is used to verify the feasibility and effectiveness of our novel model. The results show that our model indeed improves the classification ability of earlier models and possesses some ability to tolerate faults through adjusting the parameter λ and the confidence threshold β; it realizes the correct classification and extracts the decision rules.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here