Premium
Stasis of functionally versatile specialists
Author(s) -
Zelditch Miriam L.,
Li Jingchun,
Swiderski Donald L.
Publication year - 2020
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/evo.13956
Subject(s) - generalist and specialist species , biology , niche , evolutionary biology , ecology , trophic level , ecological niche , adaptation (eye) , niche construction , habitat , neuroscience
A classic hypothesis posits that lineages exhibiting long‐term stasis are broadly adapted generalists that remain well‐adapted despite environmental change. However, lacking constraints that steepen adaptive peaks and stabilize the optimum, generalists’ phenotypes might drift around a broad adaptive plateau. We propose that stasis would be likely for morphological specialists that behave as ecological generalists much of the time because specialists’ functional constraints stabilize the optimum, but those with a broad niche, such as generalists, can persist despite environmental change. Tree squirrels (Callosciurinae and Sciurini) exemplify ecologically versatile specialists, being extreme in adaptations for forceful biting that expand rather than limit niche breadth. Here, we examine the structure of disparity and the evolutionary dynamics of their trophic morphology (mandible size and shape) to determine if they exhibit stasis. In both lineages, a few dietary specialists disproportionately account for disparity; excluding them, we find compelling evidence for stasis of jaw shape but not size. The primary optima of these lineages diverge little, if at all over approximately 30 million years. Once their trophic apparatus was assembled, their morphological specialization steepened the slopes of their adaptive peak and constrained the position of the optima without limiting niche breadth.