Premium
Multiple origins of sexual dichromatism and aposematism within large carpenter bees
Author(s) -
Blaimer Bonnie B.,
Mawdsley Jonathan R.,
Brady Seán G.
Publication year - 2018
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/evo.13558
Subject(s) - aposematism , biology , clade , evolutionary biology , phylogenetic tree , zoology , ecology , predation , biochemistry , predator , gene
The evolution of reversed sexual dichromatism and aposematic coloration has long been of interest to both theoreticians and empiricists. Yet despite the potential connections between these phenomena, they have seldom been jointly studied. Large carpenter bees (genus Xylocopa ) are a promising group for such comparative investigations as they are a diverse clade in which both aposematism and reversed sexual dichromatism can occur either together or separately. We investigated the evolutionary history of dichromatism and aposematism and a potential correlation of these traits with diversification rates within Xylocopa , using a newly generated phylogeny for 179 Xylocopa species based on ultraconserved elements (UCEs). A monochromatic, inconspicuous ancestor is indicated for the genus, with subsequent convergent evolution of sexual dichromatism and aposematism in multiple lineages. Aposematism is found to covary with reversed sexual dichromatism in many species; however, reversed dichromatism also evolved in non‐aposematic species. Bayesian Analysis of Macroevolutionary Models (BAMM) did not show increased diversification in any specific clade in Xylocopa , whereas support from Hidden State Speciation and Extinction (HiSSE) models remained inconclusive regarding an association of increased diversification rates with dichromatism or aposematism. We discuss the evolution of color patterns and diversification in Xylocopa by considering potential drivers of dichromatism and aposematism.