z-logo
Premium
Diversification across biomes in a continental lizard radiation
Author(s) -
Ashman L. G.,
Bragg J. G.,
Doughty P.,
Hutchinson M. N.,
Bank S.,
Matzke N. J.,
Oliver P.,
Moritz C.
Publication year - 2018
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/evo.13541
Subject(s) - library science , biological sciences , biology , computer science , computational biology
Ecological opportunity is a powerful driver of evolutionary diversification, and predicts rapid lineage and phenotypic diversification following colonization of competitor‐free habitats. Alternatively, topographic or environmental heterogeneity could be key to generating and sustaining diversity. We explore these hypotheses in a widespread lineage of Australian lizards: the Gehyra variegata group. This clade occurs across two biomes: the Australian monsoonal tropics (AMT), where it overlaps a separate, larger bodied clade of Gehyra and is largely restricted to rocks; and in the larger Australian arid zone (AAZ) where it has no congeners and occupies trees and rocks. New phylogenomic data and coalescent analyses of AAZ taxa resolve lineages and their relationships and reveal high diversity in the western AAZ (Pilbara region). The AMT and AAZ radiations represent separate radiations with no difference in speciation rates. Most taxa occur on rocks, with small geographic ranges relative to widespread generalist taxa across the vast central AAZ. Rock‐dwelling and generalist taxa differ morphologically, but only the lineage‐poor central AAZ taxa have accelerated evolution. This accords with increasing evidence that lineage and morphological diversity are poorly correlated, and suggests environmental heterogeneity and refugial dynamics have been more important than ecological release in elevating lineage diversity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here