Premium
Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls
Author(s) -
SanJose Luis M.,
Ducret Valérie,
Ducrest AnneLyse,
Simon Céline,
Roulin Alexandre
Publication year - 2017
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/evo.13343
Subject(s) - biology , epistasis , allele , phenotypic trait , genetics , genetic architecture , phenotype , evolutionary biology , genetic variation , genotype , locus (genetics) , allelic heterogeneity , gene
The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin‐1‐receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba . The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype.