Premium
Genetic drift and mutational hazard in the evolution of salamander genomic gigantism
Author(s) -
Mohlhenrich Erik Roger,
Mueller Rachel Lockridge
Publication year - 2016
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/evo.13084
Subject(s) - biology , noncoding dna , salamander , genetics , evolutionary biology , genetic drift , genome , negative selection , ectopic recombination , mutation rate , clade , gene , genetic variation , phylogenetics , recombination , zoology , genetic recombination
Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational‐hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long‐term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein‐coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade.