Premium
Social phenotype extended to communities: Expanded multilevel social selection analysis reveals fitness consequences of interspecific interactions
Author(s) -
Campobello Daniela,
Hare James F.,
Sarà Maurizio
Publication year - 2015
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/evo.12629
Subject(s) - biology , trait , inclusive fitness , kestrel , interspecific competition , social evolution , selection (genetic algorithm) , ecology , evolutionary biology , genetic fitness , kin selection , social relation , genetics , social psychology , psychology , predation , biological evolution , artificial intelligence , computer science , programming language
In social species, fitness consequences are associated with both individual and social phenotypes. Social selection analysis has quantified the contribution of conspecific social traits to individual fitness. There has been no attempt, however, to apply a social selection approach to quantify the fitness implications of heterospecific social phenotypes. Here, we propose a novel social selection based approach integrating the role of all social interactions at the community level. We extended multilevel selection analysis by including a term accounting for the group phenotype of heterospecifics. We analyzed nest activity as a model social trait common to two species, the lesser kestrel ( Falco naumanni ) and jackdaw ( Corvus monedula ), nesting in either single‐ or mixed‐species colonies. By recording reproductive outcome as a measure of relative fitness, our results reveal an asymmetric system wherein only jackdaw breeding performance was affected by the activity phenotypes of both conspecific and heterospecific neighbors. Our model incorporating heterospecific social phenotypes is applicable to animal communities where interacting species share a common social trait, thus allowing an assessment of the selection pressure imposed by interspecific interactions in nature. Finally, we discuss the potential role of ecological limitations accounting for random or preferential assortments among interspecific social phenotypes, and the implications of such processes to community evolution.