Premium
INVESTIGATING PROCESSES OF NEOTROPICAL RAIN FOREST TREE DIVERSIFICATION BY EXAMINING THE EVOLUTION AND HISTORICAL BIOGEOGRAPHY OF THE PROTIEAE (BURSERACEAE)
Author(s) -
Fine Paul V. A.,
Zapata Felipe,
Daly Douglas C.
Publication year - 2014
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/evo.12414
Subject(s) - biological dispersal , biology , ecology , biogeography , cladogenesis , amazon rainforest , habitat , biota , rainforest , phylogenetics , clade , population , biochemistry , demography , sociology , gene
Andean uplift and the collision of North and South America are thought to have major implications for the diversification of the Neotropical biota. However, few studies have investigated how these geological events may have influenced diversification. We present a multilocus phylogeny of 102 Protieae taxa (73% of published species), sampled pantropically, to test hypotheses about the relative importance of dispersal, vicariance, habitat specialization, and biotic factors in the diversification of this ecologically dominant tribe of Neotropical trees. Bayesian fossil‐calibrated analyses date the Protieae stem at 55 Mya. Biogeographic analyses reconstruct an initial late Oligocene/early Miocene radiation in Amazonia for Neotropical Protieae, with several subsequent late Miocene dispersal events to Central America, the Caribbean, Brazil's Atlantic Forest, and the Chocó. Regional phylogenetic structure results indicate frequent dispersal among regions throughout the Miocene and many instances of more recent regional in situ speciation. Habitat specialization to white sand or flooded soils was common, especially in Amazonia. There was one significant increase in diversification rate coincident with colonization of the Neotropics, followed by a gradual decrease consistent with models of diversity‐dependent cladogenesis. Dispersal, biotic interactions, and habitat specialization are thus hypothesized to be the most important processes underlying the diversification of the Protieae.