z-logo
open-access-imgOpen Access
Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly
Author(s) -
Fountain Toby,
Husby Arild,
aka Etsuko,
DiLeo Michelle F.,
Korhonen Janne H.,
Rastas Pasi,
Schulz Torsti,
Saastamoinen Marjo,
Hanski Ilkka
Publication year - 2018
Publication title -
evolutionary applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.776
H-Index - 68
ISSN - 1752-4571
DOI - 10.1111/eva.12552
Subject(s) - biological dispersal , metapopulation , biology , butterfly , ecology , population , spatial ecology , demography , sociology
Dispersal is important for determining both species ecological processes, such as population viability, and its evolutionary processes, like gene flow and local adaptation. Yet obtaining accurate estimates in the wild through direct observation can be challenging or even impossible, particularly over large spatial and temporal scales. Genotyping many individuals from wild populations can provide detailed inferences about dispersal. We therefore utilized genomewide marker data to estimate dispersal in the classic metapopulation of the Glanville fritillary butterfly ( Melitaea cinxia L.), in the Åland Islands in SW Finland. This is an ideal system to test the effectiveness of this approach due to the wealth of information already available covering dispersal across small spatial and temporal scales, but lack of information at larger spatial and temporal scales. We sampled three larvae per larval family group from 3732 groups over a six‐year period and genotyped for 272 SNP s across the genome. We used this empirical data set to reconstruct cases where full‐sibs were detected in different local populations to infer female effective dispersal distance, that is, dispersal events directly contributing to gene flow. On average this was one kilometre, closely matching previous dispersal estimates made using direct observation. To evaluate our power to detect full‐sib families, we performed forward simulations using an individual‐based model constructed and parameterized for the Glanville fritillary metapopulation. Using these simulations, 100% of predicted full‐sibs were correct and over 98% of all true full‐sib pairs were detected. We therefore demonstrate that even in a highly dynamic system with a relatively small number of markers, we can accurately reconstruct full‐sib families and for the first time make inferences on female effective dispersal. This highlights the utility of this approach in systems where it has previously been impossible to obtain accurate estimates of dispersal over both ecological and evolutionary scales.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here