Premium
Intraspecific variation in responses to aposematic prey in a jumping spider ( Phidippus regius )
Author(s) -
Powell Erin C.,
Taylor Lisa A.
Publication year - 2020
Publication title -
ethology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.739
H-Index - 74
eISSN - 1439-0310
pISSN - 0179-1613
DOI - 10.1111/eth.13089
Subject(s) - aposematism , biology , predation , intraspecific competition , jumping spider , population , zoology , jumping , spider , insect , generalist and specialist species , wolf spider , ecology , predator , demography , habitat , physiology , sociology
Aposematic signals often allow chemically defended prey to avoid attack from generalist predators, including jumping spiders. However, not all individual predators in a population behave in the same way. Here, in laboratory trials, we document that most individual Phidippus regius jumping spiders attack and reject chemically defended milkweed bugs ( Oncopeltus fasciatus ), immediately releasing them unharmed. However, a small number of individuals within the population kill and completely consume these presumably toxic prey items. This phenomenon was infrequent with only 14% of our sample (17/122) consuming the milkweed bugs over the course of the study. Individuals that killed and consumed bugs often did so repeatedly; specifically, individuals that consumed a bug in their first test were more likely to kill a bug in their second test and also tended to consume them again. We explored what might drive some (but not all) individuals to consume these bugs and found that neither sex, sexual maturity, body size, laboratory housing type, nor being wild‐caught or being laboratory‐reared, predicted milkweed bug consumption. Consuming bugs had no negative effects on spider mass or body condition; contrary to expectations, individuals that consumed milkweed bugs actually gained more body mass and increased in body condition. We discuss potential behavioural and physiological variation between individuals that may drive these rare behaviours and the implications for the evolution of prey defences.