Premium
Score Reporting for Examinees with Incomplete Data on Large‐Scale Educational Assessments
Author(s) -
Sinharay Sandip
Publication year - 2020
Publication title -
educational measurement: issues and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.158
H-Index - 52
eISSN - 1745-3992
pISSN - 0731-1745
DOI - 10.1111/emip.12396
Subject(s) - imputation (statistics) , missing data , computer science , data mining , statistics , mathematics , machine learning
Technical difficulties occasionally lead to missing item scores and hence to incomplete data on computerized tests. It is not straightforward to report scores to the examinees whose data are incomplete due to technical difficulties. Such reporting essentially involves imputation of missing scores. In this paper, a simulation study based on data from three educational tests is used to compare the performances of six approaches for imputation of missing scores. One of the approaches, based on data mining, is the first application of its kind to the problem of imputation of missing data. The approach based on data mining and a multiple imputation approach based on chained equations led to the most accurate imputation of missing scores, and hence to most accurate score reporting. A simple approach based on linear regression performed the next best overall. Several recommendations are made regarding the reporting of scores to examinees with incomplete data.