Premium
Global analysis reveals an environmentally driven latitudinal pattern in mushroom size across fungal species
Author(s) -
Bässler Claus,
Brandl Roland,
Müller Jörg,
Krah Franz S.,
Reinelt Arthur,
Halbwachs Hans
Publication year - 2021
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.13678
Subject(s) - biology , ecology , seasonality , latitude , macroecology , trait , thermoregulation , bergmann's rule , biogeography , geography , geodesy , computer science , programming language
Although macroecology is a well‐established field, much remains to be learned about the large‐scale variation of fungal traits. We conducted a global analysis of mean fruit body size of 59 geographical regions worldwide, comprising 5340 fungal species exploring the response of fruit body size to latitude, resource availability and temperature. The results showed a hump‐shaped relationship between mean fruit body size and distance to the equator. Areas with large fruit bodies were characterised by a high seasonality and an intermediate mean temperature. The responses of mutualistic species and saprotrophs were similar. These findings support the resource availability hypothesis, predicting large fruit bodies due to a seasonal resource surplus, and the thermoregulation hypothesis, according to which small fruit bodies offer a strategy to avoid heat and cold stress and therefore occur at temperature extremes. Fruit body size may thus be an adaptive trait driving the large‐scale distribution of fungal species.