Premium
The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation
Author(s) -
Bastiaansen Robbin,
Doelman Arjen,
Eppinga Maarten B.,
Rietkerk Max
Publication year - 2020
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.13449
Subject(s) - ecosystem , climate change , common spatial pattern , resilience (materials science) , alternative stable state , psychological resilience , environmental resource management , ecology , regime shift , spatial ecology , productivity , environmental science , dependency (uml) , computer science , physical geography , geography , artificial intelligence , economics , biology , physics , psychology , macroeconomics , psychotherapist , thermodynamics
Abstract In a rapidly changing world, quantifying ecosystem resilience is an important challenge. Historically, resilience has been defined via models that do not take spatial effects into account. These systems can only adapt via uniform adjustments. In reality, however, the response is not necessarily uniform, and can lead to the formation of (self‐organised) spatial patterns – typically localised vegetation patches. Classical measures of resilience cannot capture the emerging dynamics in spatially self‐organised systems, including transitions between patterned states that have limited impact on ecosystem structure and productivity. We present a framework of interlinked phase portraits that appropriately quantifies the resilience of patterned states, which depends on the number of patches, the distances between them and environmental conditions. We show how classical resilience concepts fail to distinguish between small and large pattern transitions, and find that the variance in interpatch distances provides a suitable indicator for the type of imminent transition. Subsequently, we describe the dependency of ecosystem degradation based on the rate of climatic change: slow change leads to sporadic, large transitions, whereas fast change causes a rapid sequence of smaller transitions. Finally, we discuss how pre‐emptive removal of patches can minimise productivity losses during pattern transitions, constituting a viable conservation strategy.