Premium
Resource diversity promotes among‐individual diet variation, but not genomic diversity, in lake stickleback
Author(s) -
Bolnick Daniel I.,
Ballare Kimberly M.
Publication year - 2020
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.13448
Subject(s) - stickleback , generalist and specialist species , ecology , biology , limnetic zone , trophic level , niche , population , metapopulation , ecological niche , genetic diversity , ecosystem diversity , phenotypic plasticity , biodiversity , habitat , fishery , biological dispersal , sociology , fish <actinopterygii> , demography , littoral zone
Many generalist species consist of specialised individuals that use different resources. This within‐population niche variation can stabilise population and community dynamics. Consequently, ecologists wish to identify environmental settings that promote such variation. Theory predicts that environments with greater resource diversity favour ecological diversity among consumers (via disruptive selection or plasticity). Alternatively, niche variation might be a side‐effect of neutral genomic diversity in larger populations. We tested these alternatives in a metapopulation of threespine stickleback. Stickleback consume benthic and limnetic invertebrates, focusing on the former in small lakes, the latter in large lakes. Intermediate‐sized lakes support generalist stickleback populations using an even mixture of the two prey types, and exhibit greater among‐individual variation in diet and morphology. In contrast, genomic diversity increases with lake size. Thus, phenotypic diversity and neutral genetic polymorphism are decoupled: trophic diversity being greatest in intermediate‐sized lakes with high resource diversity, whereas neutral genetic diversity is greatest in the largest lakes.