Premium
Nonlinear frequency‐dependent selection promotes long‐term coexistence between bacteria species
Author(s) -
Harmand Noémie,
Federico Valentine,
Hindré Thomas,
Lenormand Thomas
Publication year - 2019
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.13276
Subject(s) - biology , ecology , frequency dependent selection , adaptation (eye) , evolutionary biology , selection (genetic algorithm) , artificial intelligence , computer science , neuroscience
Negative frequency‐dependent selection ( NFDS ) is an important mechanism for species coexistence and for the maintenance of genetic polymorphism. Long‐term coexistence nevertheless requires NFDS interactions to be resilient to further evolution of the interacting species or genotypes. For closely related genotypes, NFDS interactions have been shown to be preserved through successive rounds of evolution in coexisting lineages. On the contrary, the evolution of NFDS interactions between distantly related species has received less attention. Here, we tracked the co‐evolution of Escherichia coli and Citrobacter freundii that initially differ in their ecological characteristics. We showed that these two bacterial species engaged in an NFDS interaction particularly resilient to further evolution: despite a very strong asymmetric rate of adaptation, their coexistence was maintained owing to an NFDS pattern where fitness increases steeply as the frequency decreases towards zero. Using a model, we showed how and why such NFDS pattern can emerge. These findings provide a robust explanation for the long‐term maintenance of species at very low frequencies.