Premium
Towards a predictive model of species interaction beta diversity
Author(s) -
Graham Catherine H.,
Weinstein Ben G.
Publication year - 2018
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.13084
Subject(s) - hummingbird , ecology , beta diversity , biodiversity , biology , approximate bayesian computation , computer science , artificial intelligence , inference
Species interactions are fundamental to community dynamics and ecosystem processes. Despite significant progress in describing species interactions, we lack the ability to predict changes in interactions across space and time. We outline a Bayesian approach to separate the probability of species co‐occurrence, interaction and detectability in influencing interaction betadiversity. We use a multi‐year hummingbird–plant time series, divided into training and testing data, to show that including models of detectability and occurrence improves forecasts of mutualistic interactions. We then extend our model to explore interaction betadiversity across two distinct seasons. Despite differences in the observed interactions among seasons, there was no significant change in hummingbird occurrence or interaction frequency between hummingbirds and plants. These results highlight the challenge of inferring the causes of interaction betadiversity when interaction detectability is low. Finally, we highlight potential applications of our model for integrating observations of local interactions with biogeographic and evolutionary histories of co‐occurring species. These advances will provide new insight into the mechanisms that drive variation in patterns of biodiversity.