Premium
Relative size predicts competitive outcome through 2 million years
Author(s) -
Liow Lee Hsiang,
Di Martino Emanuela,
Krzeminska Malgorzata,
Ramsfjell Mali,
Rust Seabourne,
Taylor Paul D.,
Voje Kjetil L.
Publication year - 2017
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.12795
Subject(s) - zooid , biology , competition (biology) , ecology
Competition is an important biotic interaction that influences survival and reproduction. While competition on ecological timescales has received great attention, little is known about competition on evolutionary timescales. Do competitive abilities change over hundreds of thousands to millions of years? Can we predict competitive outcomes using phenotypic traits? How much do traits that confer competitive advantage and competitive outcomes change? Here we show, using communities of encrusting marine bryozoans spanning more than 2 million years, that size is a significant determinant of overgrowth outcomes: colonies with larger zooids tend to overgrow colonies with smaller zooids. We also detected temporally coordinated changes in average zooid sizes, suggesting that different species responded to a common external driver. Although species‐specific average zooid sizes change over evolutionary timescales, species‐specific competitive abilities seem relatively stable, suggesting that traits other than zooid size also control overgrowth outcomes and/or that evolutionary constraints are involved.