Premium
Belowground carbon flux links biogeochemical cycles and resource‐use efficiency at the global scale
Author(s) -
Gill Allison L.,
Finzi Adrien C.
Publication year - 2016
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.12690
Subject(s) - biogeochemical cycle , primary production , biome , environmental science , biosphere , biogeochemistry , boreal , nutrient , nutrient cycle , ecosystem , tropics , ecology , taiga , carbon cycle , terrestrial ecosystem , global change , latitude , cycling , productivity , biology , climate change , forestry , geography , macroeconomics , geodesy , economics
Nutrient limitation is pervasive in the terrestrial biosphere, although the relationship between global carbon (C) nitrogen (N) and phosphorus (P) cycles remains uncertain. Using meta‐analysis we show that gross primary production ( GPP ) partitioning belowground is inversely related to soil‐available N : P, increasing with latitude from tropical to boreal forests. N‐use efficiency is highest in boreal forests, and P‐use efficiency in tropical forests. High C partitioning belowground in boreal forests reflects a 13‐fold greater C cost of N acquisition compared to the tropics. By contrast, the C cost of P acquisition varies only 2‐fold among biomes. This analysis suggests a new hypothesis that the primary limitation on productivity in forested ecosystems transitions from belowground resources at high latitudes to aboveground resources at low latitudes as C‐intensive root‐ and mycorrhizal‐mediated nutrient capture is progressively replaced by rapidly cycling, enzyme‐derived nutrient fluxes when temperatures approach the thermal optimum for biogeochemical transformations.