Premium
Acquired phototrophy stabilises coexistence and shapes intrinsic dynamics of an intraguild predator and its prey
Author(s) -
Moeller Holly V.,
Peltomaa Elina,
Johnson Matthew D.,
Neubert Michael G.
Publication year - 2016
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.12572
Subject(s) - phototroph , intraguild predation , ecology , predation , biology , photosynthesis , mixotroph , alternative stable state , ecosystem , predator , heterotroph , botany , genetics , bacteria
In marine ecosystems, acquired phototrophs – organisms that obtain their photosynthetic ability by hosting endosymbionts or stealing plastids from their prey – are omnipresent. Such taxa function as intraguild predators yet depend on their prey to periodically obtain chloroplasts. We present a new theory for the effects of acquired phototrophy on community dynamics by analysing a mathematical model of this predator–prey interaction and experimentally verifying its predictions with a laboratory model system. We show that acquired phototrophy stabilises coexistence, but that the nature of this coexistence exhibits a ‘paradox of enrichment’: as light increases, the coexistence between the acquired phototroph and its prey transitions from a stable equilibrium to boom‐bust cycles whose amplitude increases with light availability. In contrast, heterotrophs and mixotrophic acquired phototrophs (that obtain < 30% of their carbon from photosynthesis) do not exhibit such cycles. This prediction matches field observations, in which only strict ( > 95% of carbon from photosynthesis) acquired phototrophs form blooms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom