z-logo
Premium
Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns
Author(s) -
Helton Ashley M.,
Ardón Marcelo,
Bernhardt Emily S.
Publication year - 2015
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.12487
Subject(s) - biogeochemical cycle , ecological stoichiometry , ecosystem , biomass (ecology) , environmental chemistry , nitrogen cycle , environmental science , biogeochemistry , ecology , nutrient , nitrate , nitrogen , stoichiometry , chemistry , biology , organic chemistry
Carbon and nitrogen cycles are coupled through both stoichiometric requirements for microbial biomass and dissimilatory metabolic processes in which microbes catalyse reduction‐oxidation reactions. Here, we integrate stoichiometric theory and thermodynamic principles to explain the commonly observed trade‐off between high nitrate and high organic carbon concentrations, and the even stronger trade‐off between high nitrate and high ammonium concentrations, across a wide range of aquatic ecosystems. Our results suggest these relationships are the emergent properties of both microbial biomass stoichiometry and the availability of terminal electron acceptors. Because elements with multiple oxidation states (i.e. nitrogen, manganese, iron and sulphur) serve as both nutrients and sources of chemical energy in reduced environments, both assimilative demand and dissimilatory uses determine their concentrations across broad spatial gradients. Conceptual and quantitative models that integrate rather than independently examine thermodynamic, stoichiometric and evolutionary controls on biogeochemical cycling are essential for understanding local to global biogeochemical patterns.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here