Premium
Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food‐web structure
Author(s) -
Sentis Arnaud,
Hemptinne JeanLouis,
Brodeur Jacques
Publication year - 2014
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.12281
Subject(s) - food web , trophic level , ecology , ecosystem , foraging , biology , competition (biology) , ecological stability , ecological network
Revealing the links between species functional traits, interaction strength and food‐web structure is of paramount importance for understanding and predicting the relationships between food‐web diversity and stability in a rapidly changing world. However, little is known about the interactive effects of environmental perturbations on individual species, trophic interactions and ecosystem functioning. Here, we combined modelling and laboratory experiments to investigate the effects of warming and enrichment on a terrestrial tritrophic system. We found that the food‐web structure is highly variable and switches between exploitative competition and omnivory depending on the effects of temperature and enrichment on foraging behaviour and species interaction strength. Our model contributes to identifying the mechanisms that explain how environmental effects cascade through the food web and influence its topology. We conclude that considering environmental factors and flexible food‐web structure is crucial to improve our ability to predict the impacts of global changes on ecosystem diversity and stability.