z-logo
Premium
Stronger responses to darks along the ventral pathway of the cat visual cortex
Author(s) -
Oliveira Ferreira de Souza Bruno,
Casanova Christian
Publication year - 2019
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/ejn.14297
Subject(s) - visual cortex , neuroscience , receptive field , visual system , stimulus (psychology) , lateral geniculate nucleus , psychology , neurophysiology , biology , cognitive psychology
Light increments (brights) and decrements (darks) are differently processed throughout the early visual system. It is well known that a bias towards faster and stronger responses to darks is present in the retina, lateral geniculate nucleus and primary visual cortex. In humans, psychophysical and neurophysiological data indicate that darks are better detected than brights, suggesting that the dark bias found in early visual areas is transmitted across the cortical hierarchy. Here, we tested this assumption by investigating the spatiotemporal features of responses to brights and darks in area 21a, a gateway area of the cat ventral stream, using reverse correlation analysis of a sparse noise stimulus. The receptive field of most 21a neurons exhibited larger dark subfields. Additionally, the amplitude of the responses to darks was considerably greater than those evoked by brights. In the temporal domain, no differences were found between the response peak latency. Thus, the present study supports the notion that bright/dark asymmetries are transmitted throughout the cortical hierarchy and further, that the luminance processing varies as a function of the position in the cortical hierarchy, dark preference being strongly enhanced (in the spatial domain and response amplitude) along the ventral pathway.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here