Premium
Differences in spatial and temporal frequency interactions between central and peripheral parts of the feline area 18
Author(s) -
Zhao Chunzhen,
Hata Ryosuke,
Okamura Junya,
Wang Gang
Publication year - 2016
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/ejn.13372
Subject(s) - spatial frequency , receptive field , visual field , gaze , stimulus (psychology) , peripheral , eccentricity (behavior) , grating , temporal resolution , psychophysics , contrast (vision) , visual processing , neuroscience , optics , psychology , physics , computer science , artificial intelligence , perception , cognitive psychology , social psychology , operating system
Abstract The visual system demonstrates significant differences in information processing abilities between the central and peripheral parts of the visual field. Optical imaging based on intrinsic signals was used to investigate the difference in stimulus spatial and temporal frequency interactions related to receptive field eccentricity in the cat area 18. Changing either the spatial or the temporal frequency of grating stimuli had a significant impact on responses in the cortical areas corresponding to the centre of the visual field and more peripheral parts at 10 degrees eccentricity. The cortical region corresponding to the centre of the gaze was tuned to 0.4 cycles per degree (c/deg) for spatial frequency and 2 Hz for temporal frequency. In contrast, the cortical region corresponding to the periphery of the visual field was tuned to a lower spatial frequency of 0.15 c/deg and a higher temporal frequency of 4 Hz. Interestingly, when we simultaneously changed both the spatial frequency and the temporal frequency of the grating stimuli, the responses were significantly different from those estimated with an assumption of independence between the spatial and temporal frequency in the cortical region corresponding to the periphery of the visual field. However, in the cortical area corresponding to the centre of the gaze, spatial frequency showed significant independence from temporal frequency. These properties support the notion of relative specialization of visual information processing for peripheral representations in cortical areas.