z-logo
Premium
Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons
Author(s) -
Maroun Mouna,
Ioannides Pericles J.,
Bergman Krista L.,
Kavushansky Alexandra,
Holmes Andrew,
Wellman Cara L.
Publication year - 2013
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/ejn.12259
Subject(s) - basolateral amygdala , amygdala , dendritic spine , neuroscience , extinction (optical mineralogy) , prefrontal cortex , psychology , fear conditioning , neuroplasticity , chemistry , cognition , hippocampal formation , mineralogy
Stress‐sensitive psychopathologies such as post‐traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex‐to‐ BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non‐conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress‐related disorders.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here