z-logo
Premium
The complementary role of lentic and lotic habitats for Arctic grayling in a complex stream‐lake network in Arctic Alaska
Author(s) -
Heim Kurt C.,
Arp Christopher D.,
Whitman Matthew S.,
Wipfli Mark S.
Publication year - 2019
Publication title -
ecology of freshwater fish
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.667
H-Index - 55
eISSN - 1600-0633
pISSN - 0906-6691
DOI - 10.1111/eff.12444
Subject(s) - grayling , lake ecosystem , habitat , river ecosystem , arctic , juvenile fish , ecology , streams , fish migration , environmental science , fishery , foraging , geography , juvenile , biology , computer network , computer science
Lakes can be important to stream dwelling fishes, yet how individuals exploit habitat heterogeneity across complex stream‐lake networks is poorly understood. Furthermore, despite growing awareness that intermittent streams are widely used by fish, studies documenting the use of seasonally accessible lakes remain scarce. We studied Arctic grayling ( Thymallus arcticus ) in a small seasonally flowing (June–October) stream‐lake network in Alaska using PIT telemetry. Overall, 70% of fish visited two lakes, 8% used a single lake, and 22% used only stream reaches. We identified five distinct behavioural patterns that differed in dominant macrohabitat used (deep lake, shallow lake or stream reaches), entry day into the network and mobility. Some juvenile fish spent the entire summer in a shallow seasonally frozen lake (average 71 days), whereas others demonstrated prospecting behaviour and only entered the stream channel briefly in September. Another group included adult and juvenile fish that were highly mobile, moving up to 27 km while in the 3‐km stream‐lake network, and used stream reaches extensively (average 59 days). Lentic and lotic habitats served differing roles for individuals, some fish occupied stream reaches as summer foraging habitat, and other individuals used them as migration corridors to access lakes. Our study emphasises the importance of considering stream‐lake connectivity in stream fish assessments, even to shallow seasonally frozen habitats not widely recognised as important. Furthermore, we demonstrate that individuals may use temporary aquatic habitats in complex and changing ways across ontogeny that are not captured by typical classifications of fish movement behaviour.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here