Premium
Fire? They don't give a dung! The resilience of dung beetles to fire in a tropical savanna
Author(s) -
Nunes Cássio A.,
Beiroz Wallace,
da Silva Pedro G.,
Braga Rodrigo F.,
Fernandes G. Wilson,
Neves Frederico De S.
Publication year - 2019
Publication title -
ecological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.865
H-Index - 81
eISSN - 1365-2311
pISSN - 0307-6946
DOI - 10.1111/een.12705
Subject(s) - dung beetle , ecology , tropical savanna climate , biology , ecosystem , disturbance (geology) , scarabaeinae , biomass (ecology) , resistance (ecology) , species richness , wet season , fire ecology , dry season , scarabaeidae , paleontology
1. Disturbance is a strong driver of community assembly and fire has long been recognised as one of the main disturbances of terrestrial ecosystems. This study tested the resilience of dung beetles to fire events in campos rupestres , which is a tropical savanna ecosystem that evolved under a frequent fire regime, by assessing the resistance and recovery of their communities. 2. Dung beetles were sampled before and after a fire event and the effect of fire on dung beetle richness, abundance, mean community biomass and composition was tested. The effects of time since last fire and fire frequency on the community were also tested. 3. No effect of fire occurrence, time since last fire and fire frequency on any community variable was found. 4. Some non‐mutually exclusive mechanisms promoting the resistance and recovery of dung beetles in campos rupestres could be acting in synergy. One potential mechanism is the mismatched seasonality between fire events and dung beetle occurrence, as fires occur during the dry season and dung beetles are present above ground during the rainy season. Furthermore, dung beetles are insects that remain buried during most of their lifetime, which could protect individuals from being burned. Another potential mechanism is the replacement of species in burned areas by the movement of individuals from unburned areas, attracted by resources and/or by metacommunity dynamics. 5. It is concluded that in this ‘fire‐dependent’ ecosystem, dung beetle communities are resilient to fire and seem not to be structured by this disturbance.