Premium
Different effects of exogenous jasmonic acid on preference and performance of viruliferous Bemisia tabaci B and Q
Author(s) -
Shi Xiaobin,
Pan Huipeng,
Xie Wen,
Wang Shaoli,
Wu Qingjun,
Chen Gong,
Tian Lixia,
Zhou Xuguo,
Liu Yong,
Zhang Youjun
Publication year - 2017
Publication title -
entomologia experimentalis et applicata
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 83
eISSN - 1570-7458
pISSN - 0013-8703
DOI - 10.1111/eea.12635
Subject(s) - biology , whitefly , fecundity , solanum , jasmonic acid , pest analysis , hemiptera , biological pest control , botany , tomato yellow leaf curl virus , plant virus , horticulture , solanaceae , virus , virology , population , biochemistry , demography , sociology , gene
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), B and Q biotypes have caused severe losses to crops and vegetables through virus transmission. Our previous studies showed that Q is more efficient than B in acquisition and transmission of tomato yellow leaf curl virus ( TYLCV ) and viruliferous Q is better equipped than B in counterattacking jasmonic acid ( JA )‐related plant defense. To understand how plant‐mediated defensive responses involving JA affect insect vectors within a tritrophic framework of plants, insects, and viruses, we examined the effects of exogenous JA on preference and performance of non‐viruliferous and viruliferous B and Q on tomato plants ( Solanum lycopersicum L., Solanaceae). Our results demonstrated a significantly lower fecundity, shorter longevity, shorter developmental time, and lower survival rate of whiteflies on JA ‐treated than on control plants. In addition, viruliferous Q performed significantly better than B in fecundity, longevity, developmental time, and survival rate. When given a choice between JA ‐treated and control tomato plants, viruliferous Q was not repelled to JA ‐treated plants when the JA concentration was 0.01 and 0.1 m m , whereas others all preferred the untreated control plants. Exogenous JA increased the concentration and the composition of plant volatiles, such as α‐terpinene and β‐ocimene, which deterred whiteflies in a Y‐tube bioassay. It is worth noting that Q has a mutualistic relationship with TYLCV to counteract the host defenses. A better understanding of tritrophic interactions between plants, insects, and viruses will facilitate the development of sustainable management of this invasive global pest.