Premium
Day vs. night predation on artificial caterpillars in primary rainforest habitats – an experimental approach
Author(s) -
Seifert Carlo L.,
Schulze Christian H.,
Dreschke Tobias C. T.,
Frötscher Heinrich,
Fiedler Konrad
Publication year - 2016
Publication title -
entomologia experimentalis et applicata
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 83
eISSN - 1570-7458
pISSN - 0013-8703
DOI - 10.1111/eea.12379
Subject(s) - predation , biology , ecology , predator , rainforest , herbivore , canopy , foraging , habitat , nocturnal , tropical rainforest , tree canopy
The influence of natural enemies has led to the evolution of various predator avoidance strategies in herbivorous insects. Many caterpillars are exclusively active at night and rest during the day. It is widely assumed that nocturnal activity in caterpillars reduces their risk of falling prey to their natural enemies. To test this hypothesis, we compared predation pressure between day and night in tree‐fall gaps and closed‐canopy forest sites in an Amazonian primary lowland rainforest. Artificial clay caterpillars, showing camouflaged colouration (green), were exposed as potential prey to a natural predator community. Attacks were significantly more frequent during daytime and were reduced by about a quarter at night in tree‐fall gaps, and by a third in closed‐canopy forest sites. This supports the idea of time‐dependent activity in caterpillars as an antipredatory adaptation. Further, independent of the time of day, predation pressure on caterpillars was significantly higher in tree‐fall gaps compared to closed‐canopy forest habitats. Nearly all predation events were caused by arthropods, whereas birds played a negligible role. Across both habitat types and time scales, ants acted as major predator group, emphasising their important role in population control of herbivorous insects in lowland rainforest ecosystems. This is the first experimental study using artificial caterpillars to examine whether time‐scheduling of exposition might influence predation risk amongst undefended, solitary, free‐living lepidopteran larvae.