z-logo
open-access-imgOpen Access
Backfitting and smooth backfitting in varying coefficient quantile regression
Author(s) -
Lee Young K.,
Mammen Enno,
Park Byeong U.
Publication year - 2014
Publication title -
the econometrics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.861
H-Index - 36
eISSN - 1368-423X
pISSN - 1368-4221
DOI - 10.1111/ectj.12017
Subject(s) - quantile , quantile regression , estimator , mathematics , additive model , econometrics , mathematical optimization , statistics
Summary In this paper, we study ordinary backfitting and smooth backfitting as methods of fitting varying coefficient quantile models. We do this in a unified framework that accommodates various types of varying coefficient models. Our framework also covers the additive quantile model as a special case. Under a set of weak conditions, we derive the asymptotic distributions of the backfitting estimators. We also briefly report on the results of a simulation study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom