z-logo
open-access-imgOpen Access
Disentangling drivers of spatial autocorrelation in species distribution models
Author(s) -
Mielke Konrad P.,
Claassen Tom,
Busana Michela,
Heskes Tom,
Huijbregts Mark A. J.,
Koffijberg Kees,
Schipper Aafke M.
Publication year - 2020
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/ecog.05134
Subject(s) - autocorrelation , spatial analysis , ecology , spatial ecology , null model , spatial distribution , species distribution , habitat , statistics , biology , mathematics
Species distribution models (SDMs) are frequently used to understand the influence of site properties on species occurrence. For robust model inference, SDMs need to account for the spatial autocorrelation of virtually all species occurrence data. Current methods do not routinely distinguish between extrinsic and intrinsic drivers of spatial autocorrelation, although these may have different implications for conservation. Here, we present and test a method that disentangles extrinsic and intrinsic drivers of spatial autocorrelation using repeated observations of a species. We focus on unknown habitat characteristics and conspecific interactions as extrinsic and intrinsic drivers, respectively. We model the former with spatially correlated random effects and the latter with an autocovariate, such that the spatially correlated random effects are constant across the repeated observations whereas the autocovariate may change. We tested the performance of our model on virtual species data and applied it to observations of the corncrake Crex crex in the Netherlands. Applying our model to virtual species data revealed that it was well able to distinguish between the two different drivers of spatial autocorrelation, outperforming models with no or a single component for spatial autocorrelation. This finding was independent of the direction of the conspecific interactions (i.e. conspecific attraction versus competitive exclusion). The simulations confirmed that the ability of our model to disentangle both drivers of autocorrelation depends on repeated observations. In the case study, we discovered that the corncrake has a stronger response to habitat characteristics compared to a model that did not include spatially correlated random effects, whereas conspecific interactions appeared to be less important. This implies that future conservation efforts should primarily focus on maximizing habitat availability. Our study shows how to systematically disentangle extrinsic and intrinsic drivers of spatial autocorrelation. The method we propose can help to correctly identify the main drivers of species distributions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here