z-logo
open-access-imgOpen Access
Importance of spatio–temporal connectivity to maintain species experiencing range shifts
Author(s) -
Huang JunLong,
Andrello Marco,
Martensen Alexandre Camargo,
Saura Santiago,
Liu DianFeng,
He JianHua,
Fortin MarieJosée
Publication year - 2020
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/ecog.04716
Subject(s) - habitat , biological dispersal , range (aeronautics) , ecology , climate change , context (archaeology) , niche , species distribution , landscape connectivity , temporal scales , population , geography , environmental science , biology , materials science , demography , archaeology , sociology , composite material
Climate change can affect the habitat resources available to species by changing habitat quantity, suitability and spatial configuration, which largely determine population persistence in the landscape. In this context, dispersal is a central process for species to track their niche. Assessments of the amount of reachable habitat (ARH) using static snap‐shots do not account, however, for the temporal overlap of habitat patches that may enhance stepping‐stone effects. Here, we quantified the impacts of climate change on the ARH using a spatio–temporal connectivity model. We first explored the importance of spatio–temporal connectivity relative to purely spatial connectivity in a changing climate by generating virtual species distributions and analyzed the relative effects of changes in habitat quantity, suitability and configuration. Then, we studied the importance of spatio–temporal connectivity in three vertebrate species with divergent responses to climate change in North America (grey wolf, Canadian lynx and white‐tailed deer). We found that the spatio–temporal connectivity could enhance the stepping‐stone effect for species predicted to experience range contractions, and the relative importance of the spatio–temporal connectivity increased with the reduction in habitat quantity and suitability. Conversely, for species that are likely to expand their ranges, spatio–temporal connectivity had no additional contribution to improve the ARH. We also found that changes in habitat amount (quantity and suitability) were more influential than changes in habitat configuration in determining the relative importance of spatio–temporal connectivity. We conclude that spatio–temporal connectivity may provide less biased and more realistic estimates of habitat connectivity than purely spatial connectivity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here