z-logo
open-access-imgOpen Access
Predictors of Phytophthora diversity and community composition in natural areas across diverse Australian ecoregions
Author(s) -
Burgess Treena I.,
McDougall Keith L.,
Scott Peter M.,
Hardy Giles E. StJ.,
Garnas Jeff
Publication year - 2019
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/ecog.03904
Subject(s) - ecoregion , species richness , ecology , phytophthora , biology , biodiversity , species diversity , taxon , geography , botany
Comprehensive understanding of the patterns and drivers of microbial diversity at a landscape scale is in its infancy, despite the recent ease by which soil communities can be characterized using massively parallel amplicon sequencing. Here we report on a comprehensive analysis of the drivers of diversity distribution and composition of the ecologically and economically important Phytophthora genus from 414 soil samples collected across Australia. We assessed 22 environmental and seven categorical variables as potential predictors of Phytophthora species richness, α and β diversity, including both phylogenetically and non‐phylogenically explicit methods. In addition, we classified each species as putatively native or introduced and examined the distribution with respect to putative origin. The two most widespread species, P. multivora and P. cinnamomi , are introduced, though five of the ten most widely distributed species are putatively native. Introduced taxa comprised over 54% of Australia's Phytophthora diversity and these species are known pathogens of annual and perennial crop habitats as well as urban landscapes and forestry. Patterns of composition were most strongly predicted by bioregion (R 2  = 0.29) and ecoregion (R 2  = 0.26) identity; mean precipitation of warmest quarter, mean temperature of the wettest quarter and latitude were also highly significant and described approximately 21, 14 and 13% of variation in NMDS composition, respectively. We also found statistically significant evidence for phylogenetic over‐dispersion with respect to key climate variables.This study provides a strong baseline for understanding biogeographical patterns in this important genus as well the impact of key plant pathogens and invasive Phytophthora species in natural ecosystems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here