z-logo
open-access-imgOpen Access
Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co‐occurrence
Author(s) -
D'Amen Manuela,
Mod Heidi K.,
Gotelli Nicholas J.,
Guisan Antoine
Publication year - 2018
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/ecog.03148
Subject(s) - biological dispersal , ecology , interspecific competition , community , null model , species distribution , niche , environmental gradient , biology , habitat , population , demography , sociology
A key focus in ecology is to search for community assembly rules. Here we compare two community modelling frameworks that integrate a combination of environmental and spatial data to identify positive and negative species associations from presence–absence matrices, and incorporate an additional comparison using joint species distribution models (JSDM). The frameworks use a dichotomous logic tree that distinguishes dispersal limitation, environmental requirements, and interspecific interactions as causes of segregated or aggregated species pairs. The first framework is based on a classical null model analysis complemented by tests of spatial arrangement and environmental characteristics of the sites occupied by the members of each species pair (Classic framework). The second framework, (SDM framework) implemented here for the first time, builds on the application of environmentally‐constrained null models (or JSDMs) to partial out the influence of the environment, and includes an analysis of the geographical configuration of species ranges to account for dispersal effects. We applied these approaches to examine plot‐level species co‐occurrence in plant communities sampled along a wide elevation gradient in the Swiss Alps. According to the frameworks, the majority of species pairs were randomly associated, and most of the non‐random positive and negative species associations could be attributed to environmental filtering and/or dispersal limitation. These patterns were partly detected also with JSDM. Biotic interactions were detected more frequently in the SDM framework, and by JSDM, than in the Classic framework. All approaches detected species aggregation more often than segregation, perhaps reflecting the important role of facilitation in stressful high‐elevation environments. Differences between the frameworks may reflect the explicit incorporation of elevational segregation in the SDM framework and the sensitivity of JSDM to the environmental data. Nevertheless, all methods have the potential to reveal general patterns of species co‐occurrence for different taxa, spatial scales, and environmental conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here